5532 independent reflections

 $R_{\rm int} = 0.048$

3876 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1,2,3,4-Tetramethylcyclopent-2-ene-1,4diol

Steffen Blaurock, Axel Fischer, Jochen Gottfriedsen, Marlies Spoida and Frank T. Edelmann*

Chemisches Institut, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany Correspondence e-mail: frank.edelmann@ovgu.de

Received 9 July 2008; accepted 29 August 2008

Key indicators: single-crystal X-ray study; T = 133 K; mean σ (C–C) = 0.002 Å; R factor = 0.049; wR factor = 0.142; data-to-parameter ratio = 24.8.

The title compound, C₉H₁₆O₂, crystallizes with two molecules in the asymmetric unit. The structure displays intermolecular $O-H \cdots O$ hydrogen bonding.

Related literature

For related literature, see: Etter (1991); Brock & Duncan (1994); Fendrick et al. (1988).

Experimental

Crystal data

 $C_9H_{16}O_2$ $M_r = 156.22$ Monoclinic, $P2_1/c$ a = 13.006 (3) Å b = 10.5279 (16) Å c = 13.892 (2) Å $\beta = 107.257 \ (10)^{\circ}$

V = 1816.6 (6) Å ³	
Z = 8	
Mo Ka radiation	
$\mu = 0.08 \text{ mm}^{-1}$	
T = 133 (2) K	
$0.45 \times 0.28 \times 0.07$	mm

Data collection

Bruker SMART CCD diffractometer Absorption correction: none 20936 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.048$	H atoms treated by a mixture of
$wR(F^2) = 0.142$	independent and constrained
S = 1.03	refinement
5532 reflections	$\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$
223 parameters	$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$D1 - H01 \cdots O2^{i}$ $D1' - H01' \cdots O1$ $D2 - H02 \cdots O2'^{ii}$ $D2' - H02' \cdots O1'^{ii}$	0.95 (2) 0.921 (18) 0.841 (19) 0.86 (2)	1.80 (2) 1.824 (18) 1.89 (2) 1.89 (2)	2.7438 (13) 2.7345 (13) 2.7263 (13) 2.7333 (13)	174.7 (17) 169.3 (16) 173.0 (18) 166.1 (18)

Symmetry codes: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) -x + 1, -y + 1, -z + 1.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP5 in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Financial support by the Otto-von-Guericke-Universität Magdeburg is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2745).

References

Brock, C. P. & Duncan, L. L. (1994). Chem. Mater. 6, 1307-1312.

Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Etter, M. C. (1991). J. Phys. Chem. 95, 4601-4610.

Fendrick, C. M., Schertz, L. D., Day, V. W. & Marks, T. J. (1988). Organometallics, 7, 1828-1838.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2008). E64, o1881 [doi:10.1107/S160053680802775X]

1,2,3,4-Tetramethylcyclopent-2-ene-1,4-diol

S. Blaurock, A. Fischer, J. Gottfriedsen, M. Spoida and F. T. Edelmann

Comment

In the solid state, alcohols generally form hydrogen-bonded networks resulting in a variety of ring, chain, or helix structures (Brock & Duncan, 1994). The hitherto unknown title compound, 1,2,3,4-tetramethylcyclopen-2-ene-1,4-diol, was obtained in minor quantities (less than 5% isolated yield) in the form of colorless crystals during a preparation of 1,2,3,4-tetramethyl-cyclopentadiene according to the literature (Fendrick *et al.*, 1988). The structure of the title compound is shown in Figure 1. Dimensions are available in the archived CIF. Especially notable is the hydrogen-bond network in the crystal structure. As depicted in Figure 2, four molecules of 1,2,3,4-tetramethylcyclopen-2-ene-1,4-diol are connected *via* hydrogen-bonds to give cyclic tetramers. Further hydrogen-bonding between adjacent tetrameric units results in an extended hydrogen-bond network.

Experimental

Crystals of the title compound were obtained as a minor by-product during the synthesis of 1,2,3,4-tetramethylcyclopentadiene according to the literature preparatio (Fendrick *et al.*, 1988).

Refinement

H atoms bonded to C were refined with fixed individual displacement parameters $[U(H) = 1.2 U_{eq}(C) \text{ or } U(H) = 1.5 U_{eq}(C_{methyl})]$ using a riding model with C-H(methylen) = 0.99 Å or C-H(methyl) = 0.98Å, respectively. The H atoms bonded to O were refined isotropically.

Figures

Fig. 1. The molecule of the title compound in the crystal. Displacement ellipsoids represent 50% probability levels. H-Atom radii are arbitrary.

1,2,3,4-Tetramethylcyclopent-2-ene-1,4-diol

Crystal	data
---------	------

C₉H₁₆O₂ $M_r = 156.22$ Monoclinic, $P2_1/c$ Hall symbol: -P2ybc a = 13.006 (3) Å b = 10.5279 (16) Å c = 13.892 (2) Å $\beta = 107.257$ (10)° V = 1816.6 (6) Å³ Z = 8

Data collection

Bruker SMART CCD diffractometer	5532 independent reflections
Radiation source: fine-focus sealed tube	3876 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.048$
Detector resolution: 8.192 pixels mm ⁻¹	$\theta_{\text{max}} = 30.5^{\circ}$
T = 133(2) K	$\theta_{\min} = 1.6^{\circ}$
ω–scans	$h = -18 \rightarrow 18$
Absorption correction: none	$k = -14 \rightarrow 15$
20936 measured reflections	$l = -19 \rightarrow 19$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.048$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.142$	$w = 1/[\sigma^2(F_o^2) + (0.0812P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\text{max}} = 0.002$
5532 reflections	$\Delta \rho_{max} = 0.41 \text{ e } \text{\AA}^{-3}$
223 parameters	$\Delta \rho_{\rm min} = -0.23 \ e \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

 $F_{000} = 688$

 $D_{\rm x} = 1.142 \text{ Mg m}^{-3}$ Mo *K* α radiation

Cell parameters from 5784 reflections

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.5 - 30.0^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$

T = 133 (2) K

Plate, colourless $0.45 \times 0.28 \times 0.07 \text{ mm}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
01	0.16035 (7)	0.34338 (9)	0.59028 (7)	0.0255 (2)
O2	0.16763 (8)	0.21564 (10)	0.28457 (7)	0.0330 (3)
H02	0.2279 (16)	0.2415 (16)	0.3207 (14)	0.048 (5)*
H01	0.1585 (14)	0.3212 (17)	0.6560 (15)	0.055 (5)*
C1	0.08579 (10)	0.28972 (13)	0.41367 (9)	0.0260 (3)
H1A	0.0100	0.3172	0.3852	0.031*
H1B	0.1335	0.3623	0.4115	0.031*
C2	0.10655 (9)	0.24265 (12)	0.52290 (8)	0.0210 (2)
C3	0.17851 (9)	0.12814 (12)	0.52756 (9)	0.0217 (2)
C4	0.17849 (10)	0.09054 (12)	0.43564 (10)	0.0242 (3)
C5	0.11007 (10)	0.17648 (13)	0.35382 (9)	0.0260 (3)
C6	0.00335 (10)	0.20778 (14)	0.54767 (10)	0.0290 (3)
H6C	0.0216	0.1724	0.6159	0.035*
H6B	-0.0368	0.1446	0.4992	0.035*
H6A	-0.0410	0.2840	0.5438	0.035*
C7	0.23648 (11)	0.06809 (14)	0.62666 (10)	0.0312 (3)
H7C	0.2703	-0.0112	0.6148	0.037*
H7B	0.1851	0.0499	0.6641	0.037*
H7A	0.2920	0.1263	0.6659	0.037*
C8	0.23380 (13)	-0.02192 (15)	0.40823 (12)	0.0397 (4)
H8C	0.2779	-0.0635	0.4698	0.048*
H8B	0.2800	0.0058	0.3678	0.048*
H8A	0.1799	-0.0819	0.3691	0.048*
C9	0.00891 (12)	0.11076 (17)	0.28879 (11)	0.0403 (4)
H9C	-0.0333	0.1707	0.2385	0.048*
H9B	-0.0343	0.0814	0.3315	0.048*
H9A	0.0293	0.0379	0.2545	0.048*
01'	0.34071 (7)	0.44079 (8)	0.55499 (7)	0.0229 (2)
H01'	0.2803 (14)	0.4165 (17)	0.5720 (13)	0.042 (5)*
O2'	0.63799 (7)	0.68485 (9)	0.61022 (7)	0.0229 (2)
H02'	0.6360 (15)	0.6373 (17)	0.5589 (15)	0.053 (5)*
C1'	0.48169 (9)	0.58556 (11)	0.64713 (8)	0.0188 (2)
H1'1	0.5235	0.5089	0.6413	0.023*

supplementary materials

H1'2	0.4843	0.5963	0.7186	0.023*
C2'	0.36462 (9)	0.57287 (11)	0.58020 (9)	0.0183 (2)
C3'	0.36529 (9)	0.64743 (11)	0.48658 (9)	0.0195 (2)
C4'	0.45363 (9)	0.71901 (11)	0.50268 (8)	0.0190 (2)
C5'	0.52810 (9)	0.70382 (11)	0.60928 (8)	0.0182 (2)
C6'	0.28221 (10)	0.62512 (13)	0.62934 (10)	0.0258 (3)
H6'C	0.2096	0.6166	0.5823	0.031*
H6'B	0.2974	0.7149	0.6461	0.031*
H6'A	0.2869	0.5772	0.6910	0.031*
C7'	0.27255 (10)	0.63672 (14)	0.39236 (10)	0.0279 (3)
H7'C	0.2824	0.6968	0.3420	0.033*
H7'B	0.2054	0.6563	0.4076	0.033*
H7'A	0.2691	0.5501	0.3658	0.033*
C8'	0.48398 (11)	0.80742 (12)	0.43083 (10)	0.0269 (3)
H8'C	0.4254	0.8108	0.3674	0.032*
H8'B	0.5497	0.7766	0.4178	0.032*
H8'A	0.4966	0.8926	0.4604	0.032*
C9'	0.52987 (11)	0.82140 (12)	0.67418 (10)	0.0251 (3)
H9'C	0.5805	0.8079	0.7414	0.030*
H9'B	0.4576	0.8364	0.6801	0.030*
H9'A	0.5526	0.8953	0.6427	0.030*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0289 (5)	0.0282 (5)	0.0219 (4)	-0.0072 (4)	0.0112 (4)	-0.0031 (4)
02	0.0267 (5)	0.0570 (7)	0.0158 (4)	-0.0163 (5)	0.0073 (4)	-0.0031 (4)
C1	0.0231 (6)	0.0341 (7)	0.0202 (6)	0.0010 (5)	0.0056 (5)	0.0049 (5)
C2	0.0199 (6)	0.0263 (6)	0.0171 (5)	-0.0033 (5)	0.0058 (4)	0.0005 (4)
C3	0.0188 (6)	0.0260 (6)	0.0205 (6)	-0.0037 (5)	0.0061 (5)	0.0017 (5)
C4	0.0226 (6)	0.0274 (6)	0.0243 (6)	-0.0055 (5)	0.0095 (5)	-0.0036 (5)
C5	0.0208 (6)	0.0402 (7)	0.0173 (6)	-0.0091 (5)	0.0061 (5)	-0.0010 (5)
C6	0.0216 (6)	0.0397 (8)	0.0278 (7)	-0.0046 (5)	0.0106 (5)	-0.0011 (5)
C7	0.0316 (7)	0.0343 (7)	0.0265 (7)	0.0029 (6)	0.0067 (6)	0.0063 (6)
C8	0.0442 (9)	0.0363 (8)	0.0449 (9)	0.0000(7)	0.0229 (7)	-0.0084 (7)
C9	0.0297 (7)	0.0629 (11)	0.0264 (7)	-0.0213 (7)	0.0055 (6)	-0.0049 (7)
01'	0.0221 (4)	0.0214 (4)	0.0278 (5)	-0.0045 (3)	0.0114 (4)	-0.0053 (3)
O2'	0.0167 (4)	0.0300 (5)	0.0219 (4)	-0.0034 (3)	0.0057 (3)	-0.0059 (4)
C1'	0.0199 (5)	0.0204 (5)	0.0160 (5)	-0.0008 (4)	0.0053 (4)	0.0006 (4)
C2'	0.0185 (5)	0.0182 (5)	0.0193 (5)	-0.0014 (4)	0.0074 (4)	-0.0025 (4)
C3'	0.0204 (5)	0.0211 (6)	0.0166 (5)	0.0036 (4)	0.0049 (4)	-0.0002 (4)
C4'	0.0227 (6)	0.0192 (5)	0.0161 (5)	0.0025 (4)	0.0071 (4)	0.0009 (4)
C5'	0.0171 (5)	0.0206 (6)	0.0175 (5)	-0.0010 (4)	0.0062 (4)	-0.0009 (4)
C6'	0.0249 (6)	0.0274 (6)	0.0288 (6)	-0.0009(5)	0.0138 (5)	-0.0038 (5)
C7'	0.0250 (6)	0.0323 (7)	0.0215 (6)	0.0025 (5)	-0.0006 (5)	0.0001 (5)
C8'	0.0320 (7)	0.0270 (6)	0.0241 (6)	0.0014 (5)	0.0119 (5)	0.0067 (5)
C9'	0.0301 (6)	0.0237 (6)	0.0230 (6)	-0.0028(5)	0.0101 (5)	-0.0054 (5)

Geometric parameters (Å, °)

O1—C2	1.4498 (14)	O1'—C2'	1.4451 (14)
O1—H01	0.95 (2)	O1'—H01'	0.921 (18)
O2—C5	1.4434 (15)	O2'—C5'	1.4394 (14)
O2—H02	0.841 (19)	O2'—H02'	0.86 (2)
C1—C5	1.5388 (19)	C1'—C2'	1.5365 (16)
C1—C2	1.5421 (17)	C1'—C5'	1.5425 (16)
C1—H1A	0.9900	C1'—H1'1	0.9900
C1—H1B	0.9900	C1'—H1'2	0.9900
C2—C3	1.5157 (18)	C2'—C3'	1.5214 (16)
C2—C6	1.5259 (17)	C2'—C6'	1.5334 (17)
C3—C4	1.3369 (17)	C3'—C4'	1.3362 (17)
C3—C7	1.4992 (17)	C3'—C7'	1.4981 (17)
C4—C8	1.492 (2)	C4'—C8'	1.5007 (17)
C4—C5	1.5174 (19)	C4'—C5'	1.5184 (16)
С5—С9	1.5233 (18)	C5'—C9'	1.5275 (16)
С6—Н6С	0.9800	C6'—H6'C	0.9800
С6—Н6В	0.9800	С6'—Н6'В	0.9800
С6—Н6А	0.9800	С6'—Н6'А	0.9800
С7—Н7С	0.9800	С7'—Н7'С	0.9800
С7—Н7В	0.9800	С7'—Н7'В	0.9800
С7—Н7А	0.9800	С7'—Н7'А	0.9800
C8—H8C	0.9800	C8'—H8'C	0.9800
C8—H8B	0.9800	C8'—H8'B	0.9800
С8—Н8А	0.9800	C8'—H8'A	0.9800
С9—Н9С	0.9800	С9'—Н9'С	0.9800
С9—Н9В	0.9800	С9'—Н9'В	0.9800
С9—Н9А	0.9800	С9'—Н9'А	0.9800
C2-O1-H01	107.2 (11)	C2'—O1'—H01'	110.1 (11)
С5—О2—Н02	105.7 (13)	С5'—О2'—Н02'	106.6 (13)
C5—C1—C2	106.18 (10)	C2'—C1'—C5'	106.36 (9)
C5—C1—H1A	110.5	C2'—C1'—H1'1	110.5
C2—C1—H1A	110.5	C5'—C1'—H1'1	110.5
C5-C1-H1B	110.5	C2'—C1'—H1'2	110.5
C2—C1—H1B	110.5	C5'—C1'—H1'2	110.5
H1A—C1—H1B	108.7	H1'1—C1'—H1'2	108.6
O1—C2—C3	112.37 (10)	O1'—C2'—C3'	110.16 (9)
O1—C2—C6	108.58 (10)	O1'—C2'—C6'	108.94 (10)
C3—C2—C6	111.86 (10)	C3'—C2'—C6'	112.18 (10)
O1—C2—C1	108.08 (10)	O1'—C2'—C1'	109.49 (9)
C3—C2—C1	102.90 (10)	C3'—C2'—C1'	102.50 (9)
C6—C2—C1	112.97 (10)	C6'—C2'—C1'	113.42 (10)
C4—C3—C7	127.58 (12)	C4'—C3'—C7'	128.18 (11)
C4—C3—C2	111.69 (11)	C4'—C3'—C2'	111.76 (10)
C7—C3—C2	120.70 (11)	C7'—C3'—C2'	120.05 (11)
C3—C4—C8	127.96 (13)	C3'—C4'—C8'	128.40 (11)
C3—C4—C5	111.89 (11)	C3'—C4'—C5'	111.83 (10)

supplementary materials

C8—C4—C5	120.13 (12)	C8'—C4'—C5'	119.76 (10)
O2—C5—C4	111.39 (11)	O2'—C5'—C4'	111.58 (9)
O2—C5—C9	105.18 (10)	O2'—C5'—C9'	105.43 (9)
C4—C5—C9	112.63 (12)	C4'—C5'—C9'	112.58 (10)
O2—C5—C1	111.66 (11)	O2'—C5'—C1'	111.89 (9)
C4—C5—C1	103.06 (10)	C4'—C5'—C1'	102.51 (9)
C9—C5—C1	113.13 (12)	C9'—C5'—C1'	113.06 (10)
С2—С6—Н6С	109.5	C2'—C6'—H6'C	109.5
С2—С6—Н6В	109.5	C2'—C6'—H6'B	109.5
Н6С—С6—Н6В	109.5	H6'C—C6'—H6'B	109.5
С2—С6—Н6А	109.5	C2'—C6'—H6'A	109.5
Н6С—С6—Н6А	109.5	H6'C—C6'—H6'A	109.5
H6B—C6—H6A	109.5	H6'B—C6'—H6'A	109.5
С3—С7—Н7С	109.5	C3'—C7'—H7'C	109.5
С3—С7—Н7В	109.5	С3'—С7'—Н7'В	109.5
Н7С—С7—Н7В	109.5	H7'C—C7'—H7'B	109.5
С3—С7—Н7А	109.5	C3'—C7'—H7'A	109.5
H7C—C7—H7A	109.5	H7'C—C7'—H7'A	109.5
H7B—C7—H7A	109.5	H7'B—C7'—H7'A	109.5
C4—C8—H8C	109.5	C4'—C8'—H8'C	109.5
C4—C8—H8B	109.5	C4'—C8'—H8'B	109.5
Н8С—С8—Н8В	109.5	H8'C—C8'—H8'B	109.5
C4—C8—H8A	109.5	C4'—C8'—H8'A	109.5
Н8С—С8—Н8А	109.5	H8'C—C8'—H8'A	109.5
H8B—C8—H8A	109.5	H8'B—C8'—H8'A	109.5
С5—С9—Н9С	109.5	С5'—С9'—Н9'С	109.5
С5—С9—Н9В	109.5	С5'—С9'—Н9'В	109.5
Н9С—С9—Н9В	109.5	Н9'С—С9'—Н9'В	109.5
С5—С9—Н9А	109.5	С5'—С9'—Н9'А	109.5
Н9С—С9—Н9А	109.5	H9'C—C9'—H9'A	109.5
Н9В—С9—Н9А	109.5	H9'B—C9'—H9'A	109.5
C5—C1—C2—O1	139.28 (10)	C5'—C1'—C2'—O1'	138.54 (9)
C5—C1—C2—C3	20.24 (12)	C5'—C1'—C2'—C3'	21.61 (11)
C5—C1—C2—C6	-100.55 (12)	C5'—C1'—C2'—C6'	-99.55 (11)
O1—C2—C3—C4	-130.31 (11)	O1'—C2'—C3'—C4'	-130.65 (11)
C6—C2—C3—C4	107.25 (12)	C6'—C2'—C3'—C4'	107.81 (12)
C1—C2—C3—C4	-14.31 (13)	C1'—C2'—C3'—C4'	-14.19 (13)
O1—C2—C3—C7	51.62 (15)	O1'—C2'—C3'—C7'	50.55 (14)
C6—C2—C3—C7	-70.82 (14)	C6'—C2'—C3'—C7'	-70.99 (14)
C1—C2—C3—C7	167.63 (11)	C1'—C2'—C3'—C7'	167.00 (10)
C7—C3—C4—C8	1.6 (2)	C7'—C3'—C4'—C8'	-0.3 (2)
C2—C3—C4—C8	-176.35 (12)	C2'—C3'—C4'—C8'	-178.94 (11)
C7—C3—C4—C5	-179.83 (12)	C7'—C3'—C4'—C5'	179.35 (11)
C2—C3—C4—C5	2.27 (15)	C2'—C3'—C4'—C5'	0.67 (14)
C3—C4—C5—O2	130.67 (12)	C3'—C4'—C5'—O2'	133.00 (10)
C8—C4—C5—O2	-50.59 (16)	C8'—C4'—C5'—O2'	-47.36 (14)
C3—C4—C5—C9	-111.43 (13)	C3'—C4'—C5'—C9'	-108.69 (12)
C8—C4—C5—C9	67.31 (16)	C8'—C4'—C5'—C9'	70.96 (14)
C3—C4—C5—C1	10.82 (14)	C3'—C4'—C5'—C1'	13.10 (13)

C8—C4—C5—C1 C2—C1—C5—O2 C2—C1—C5—C4 C2—C1—C5—C9	-170.44 (12) -138.72 (10) -19.06 (12) 102.85 (12)	C8'—C4'—C5'—C1' C2'—C1'—C5'—O2' C2'—C1'—C5'—C4' C2'—C1'—C5'—C9'		-167.25 (10) -140.96 (9) -21.28 (11) 100.18 (11)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O1—H01···O2 ⁱ	0.95 (2)	1.80 (2)	2.7438 (13)	174.7 (17)
O1'—H01'…O1	0.921 (18)	1.824 (18)	2.7345 (13)	169.3 (16)
O2—H02···O2 ^{·ii}	0.841 (19)	1.89 (2)	2.7263 (13)	173.0 (18)
O2'—H02'…O1' ⁱⁱ	0.86 (2)	1.89 (2)	2.7333 (13)	166.1 (18)

Symmetry codes: (i) x, -y+1/2, z+1/2; (ii) -x+1, -y+1, -z+1.

Fig. 2